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Debye-Onsager relaxation effect in fully ionized plasmas

A. Esser* and G. Ro¨pke†

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
~Received 9 July 1997; revised manuscript received 17 February 1998!

We consider the virial expansion of the inverse conductivity in fully ionized plasmass215A(T)ln n
1B(T)1C(T)n1/2ln n1O(n1/2) and the coefficientC(T), which is related to the Debye-Onsager relaxation
effect, is evaluated in the nondegenerate case. In analogy to the Chapman-Enskog treatment of the Boltzmann
equation, a moment expansion to evaluateC(T) is presented. Including the two-particle distribution in the
generalized linear response theory, the original Onsager result is recovered within a hydrodynamic approxi-
mation. Improved results for the relaxation effect beyond this approximation are obtained considering higher
moments of the two-particle distribution function.@S1063-651X~98!09408-2#
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I. INTRODUCTION

One enduring problem in theoretical plasma physics is
evaluation of electrical conductivity. In the low-density lim
the conductivity of a fully ionized plasma is given by th
Spitzer formula@1#. For dense plasmas, however, experime
tal values for different plasmas@2–4# show significant devia-
tions from the Spitzer result. This discrepancy require
quantum statistical approach for transport coefficients
nonideal, strongly coupled Coulomb systems that takes
account many-particle effects such as dynamical screen
dynamical self-energy, and the formation and medium mo
fication of bound states; see@5# for a review.

A particular problem is the inclusion of nonequilibrium
two-particle correlations that lead to modifications of elec
cal conductivity. In the theory of electrolytes, which can a
be considered as Coulomb systems, the effect of a none
librium two-particle distribution on the conductivity was ob
tained by Debye@6# and Onsager@7,8#. Different methods
such as kinetic theory@9,10# and linear response theory@11#
have been used to evaluate the Debye-Onsager relax
effect in fully ionized plasmas. However, conflicting resu
for its contribution to electrical conductivity have been o
tained.

In the present paper we calculate the electrical conduc
ity using a systematic quantum statistical approach. We c
sider a fully ionized hydrogen plasma consisting of the sa
number of electrons and protons to ensure charge neutra
The electrical conductivitys(n,T) is given by the linear
relation between the mean electrical current^j & and the elec-
trical field E,

^ j &5K 1

V(
c,i

ec

mc
pc

i L 5sE. ~1!

The indexc identifies the species~for the electronme5m
andee52e and for the protonmp5M andep5e! andV is
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the system volume. In plasma physics, it is customary
introduce the dimensionless parameters

G5
e2

4pe0kBT S 4pn

3 D 1/3

, Q5
2mekBT

\2 ~3p2n!22/3. ~2!

G(n,T) describes the ratio between the mean potential
ergy and the kinetic energy andQ(n,T) denotes the degre
of degeneracy of an ideal electron gas. Using these qua
ties, we can express the electrical conductivity as

s~n,T!5
~kBT!3/2~4pe0!2

me
1/2e2 s* , ~3!

with a universal functions* (G,Q) depending on only the
characteristic plasma parameters. In the low-density li
(G!1) the electrical conductivity of a fully ionized idea
plasma with statically screened interaction is given by
famous Spitzer formula@1#

sSp* 50.591F1

2
lnS 3

2
G23D G21

. ~4!

For nonideal plasmas, the effects of degeneracy and m
particle corrections have to be included. Interpolation form
las for the electrical conductivity that are valid in a wid
region of temperatures and densities are given in@12–14#
and can be both compared with experimental data@2–4# and
Monte Carlo simulations@15#. Such interpolation formulas
reproduce rigorous expressions for the conductivity such
the low-density limit as well as results obtained from t
Ziman formula.

Our aim is the evaluation of electrical conductivity in th
low-density limit, where rigorous results can be derived.
find a microscopic expression for the electrical conductiv
we use the generalized Zubarev method of linear respo
theory, which can be found in detail, e.g., in@16#. This
method can immediately be generalized to include nonid
ity effects such as degeneracy, the formation of bound sta
and the ion structure factor, as shown in@17#. Using this
approach, transport coefficients are expressed through e
e,
2446 © 1998 The American Physical Society
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librium correlation functions and a systematical treatmen
these many-particle effects is possible. Results obtained f
kinetic theory in a perturbative treatment are reproduced
this method without partial summations, as it would be n
essary in the Kubo approach.

A virial expansion for the electrical conductivity in th
low-density, nondegenerate limit was given in@11#,

s21~n,T!5A~T!ln n1B~T!1C~T!n1/2ln n1•••, ~5!

whereC(T) is related to the Debye-Onsager relaxation
fect, which is known from the theory of electrolytes@7,8#. It
describes the partial compensation of the electric field ac
on a charged particle by the formation of an asymme
screening cloud. Klimontovich and Ebeling@18# found the
original Onsager result for the relaxation effect inweakly
ionized plasmas, where the assumption of a local Maxw
ian distribution is well founded. The treatment of thefully
ionized plasma has been considered in@11#, where also a
local Maxwellian distribution is assumed. Again the Onsa
result for C(T) is found. Results for the coefficientC(T),
which are in disagreement with the Onsager result, are
tained in kinetic theory@9,10# when a pure one-particle pic
ture is used. We show in our approach that nonequilibri
two-particle correlations have to be included to reprodu
the Onsager result. Furthermore we find thatC(T) is modi-
fied in fully ionized plasmas if the assumption of a loc
Maxwellian distribution is dropped. In Sec. II we express t
electrical conductivity in terms of equilibrium correlatio
functions. In analogy to the Chapman-Enskog approach
kinetic theory, a moment expansion of the single-particle a
two-particle distribution function is presented in Sec. I
Starting from the lowest moment approximation for t
single-particle as well as for the two-particle distributio
function in Sec. IV, we consider in Sec. V the influence
higher moments of the single-particle distribution functio
The inclusion of higher moments of the two-particle dist
bution function is presented in Sec. VI. The results are
nally discussed in Sec. VII.

II. CONDUCTIVITY WITHIN GENERALIZED LINEAR
RESPONSE THEORY

The system Hamiltonian of the fully ionized hydroge
plasma

HS5(
c,k

Ec~k!ac
†~k!ac~k!

1
1

2 (
c,d,k,p,q

Vcd~q!ac
†~k2q!ad

†~p1q!ad~p!ac~k!

~6!

contains the kinetic energyEc(k)5\2k2/2mc and the Cou-
lomb interactionVcd(q)5eced /e0Vq2. The indexk denotes
the single-particle variable momentum and spin. The sys
is subjected to a static electric fieldE5Eêz and the total
Hamiltonian reads

H tot5HS2E (
c,i

ecr c,z
i 5HS2ER. ~7!
f
m
in
-

-

g
c

l-

r

b-

e

l

in
d

f
.

-

m

A quantum statistical approach for the electrical conductiv
s ~1! requires the knowledge of the statistical operatorr(t)
to evaluate the average^ j &5Tr$r(t) j %. The nonequilibrium
statistical operatorr(t) is obtained within the Zubarev ap
proach@20# from the solution of a modified Liouville–von
Neumann equation

]r~ t !

]t
2

1

i\
@H tot ,r~ t !#52e@r~ t !2r rel~ t !#, ~8!

where the boundary condition, the weakening of initial co
relations, is included in the form of a source term. The lim
e→01 has to be taken after the thermodynamic limit. T
relevant statistical operatorr rel5Zrel

21exp(2(nlnBn) fol-
lows from the principle of maximizing the information en
tropy subject to constraints of given mean values of a se
relevant observables$Bn%. Starting from the solution of Eq
~8!, it is possible to derive a generalized Boltzmann equati
which can directly be compared with expressions from st
dard kinetic theory if the set$Bn% is given by the single-
particle occupation numbers@20#.

Using a finite set of relevant observables$Bn% to charac-
terize the nonequilibrium state, the electrical conductivity
found from linear response theory@5,17,20#

s52
b

V

1

uD@Bn8 ;Bn#u U0 N@Bn#

Q@Bn# D@Bn8 ;Bn#
U. ~9!

This expression relates the electrical conductivity to equi
rium correlation functions, which can be considered as a s
cial form of the fluctuation-dissipation theorem. The e
ments of the determinants are

N@Bn#5~Ṙ;Bn!,

Q@Bn#5~Ṙ;Bn!1^Ṙ;Ḃn&, ~10!

D@Bn8 ;Bn#5~Bn8 ;Ḃn!1^Ḃn8 ;Ḃn&,

with Ṙ52e@(m1M )/mM#P. In Eq. ~10! we use Kubo’s
scalar product@19#

~A;B!5
1

bE0

b

dt Tr@r0A~2 i\t!B#, ~11!

the equilibrium correlation function

^A;B&5E
2`

0

dt eet
„A~ t !;B…, ~12!

and the equilibrium statistical operator r0

5Z0
21exp@2b(HS2(cmcNc)#. In the Heisenberg picture

the time evolution isA(t)5exp(iHSt/\)Aexp(2iHSt/\) and
Ȧ5( i /\)@HS ,A#.

The evaluation of the equilibrium correlation function ca
be performed using the formalism of thermodynam
Green’s functions@5#. This allows for a perturbative expan
sion with respect to the interaction. Only the lowest ord
are considered in the present work. A very important qu
tion is the choice of the set of relevant observables$Bn%,
which will be discussed in the following section. In conne
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tion with expression~9! we note that this expression corr
sponds to the Chapman-Enskog or Grad approach of kin
theory if an appropriate set of relevant observables is u
see@5,11#.

III. CHOICE OF RELEVANT OBSERVABLES

For small densities it is sufficient to take fluctuations
the single-particle occupation numberdnc(k)5ac

†(k)ac(k)
2^ac

†(k)ac(k)&0 as relevant observablesBn @11#. The mean
value ^dnk&5 f k2 f k

0 describes the deviation of the singl
particle distribution functionf k from its equilibrium value
f k

0 . The response equations derived from Eq.~8! are equiva-
lent to the Boltzmann equation for the single-particle dis
bution function@20#, where the collision integral is expresse
in terms of correlation functions. The evaluation of the c
responding correlation function~10! in the ladder approxi-
mation and considering screening effects has been perfor
in @11#, where results for the coefficientsA(T) andB(T) in
Eq. ~5! were obtained. Furthermore, it was shown that
contributions to the coefficientC(T) occur within the single-
particle description.

In order to evaluate the electrical conductivity to ord
n1/2lnn with respect to the density we have to include t
two-particle distribution function. In the homogeneous ca
this means that we have to enlarge the set of relevant obs
ablesBn by inclusion of the two-particle observables

dncd~pkq!5ac
†~k2q/2!ad

†~p1q/2!ad~p2q/2!ac~k1q/2!
~13!

for qÞ0. Hence the response equations that lead to Eq.~9!
have the form of a coupled system of equations for
single- and two-particle distribution functions.

The full solution of the response equations for the sing
and two-particle distribution functions is equivalent to t
solution of a coupled system of integral equations if we c
sider the indicesk andkpq, respectively, as continuous var
ables. We will find an approximate solution of the respon
equations by taking into account only a finite number
moments of the distribution functions. In the adiabatic lim
we consider only the electron distribution. In particular,
stead of solving the response equations for the single-par
distribution we consider a finite number of moments

Pn5(
k

\kzFb \2k2

2me
G ~n/2!

ae
†~k!ae~k!. ~14!

This means that instead of the single-particle occupa
number only a finite number of momentsPn are included in
the set of relevant observablesBn . In the simplest case only
the total momentum of the electron systemP0 is considered
as a relevant observable. This leads to the well known fo
force correlation approach to the conductivity.

For a sufficient high number of moments, the sing
particle distribution function is approximated well and t
conductivity is obtained by the algebraic solution of the s
tem of response equations. This procedure corresponds t
Grad or the Chapman-Enskog approach for solving the
earized Boltzmann equation. As it is well known from th
Kohler variational principle@21#, the inclusion of higher mo-
tic
d;
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ments will increase the conductivity. It has been shown@11#
that the inclusion of a finite number of low-order momen
results in a converging expression for the termA in the virial
expansion~5!.

A similar approach can be applied for the treatment of
two-particle distribution function. Obviously the dependen
on three momenta (k,p,q) requires a larger variety of mo
ments. Conserving the dependence on the relative distanr
in the form of the Fourier transformq, moments with respec
to the momentak andp of speciesc andd, respectively, are
introduced

dnc,d
m,m8~q!5(

k,p
f c,d

m,m8~k,p,q!ac
†~k2q/2!

3ad
†~p1q/2!ad~p2q/2!ac~k1q/2!. ~15!

The functionsf c,d
m,m8(k,p,q), which will be discussed in de

tail in Secs. IV and V, are ofmth order ink and of m8th

order inp. In this way, the momentsdnc,d
m,m8(q) refer to the

momentum distributions of both particles of speciesc andd.
We will proceed as follows. In the first step, we consid

only the momentdnc,d
0,0(q) in combination with the momen

P0 @Eq. ~14!# of the single-particle distribution to demon
strate the formalism. We will extend the number of releva
observables by including further momentsPn . In the second
step we will confine ourselves toP0 ,P2 and will improve the
two-particle distribution by including the second moment

IV. ONSAGER’S RESULT

In the first step, we rederive Onsager’s result using low
moments only. As argued by Onsager@7#, the two-particle
correlation function of the electron-electron and proto
proton density@dnee

0,0(q) and dnpp
0,0(q)] does not affect the

relaxation effect in the linear regime because of symme
properties. Therefore, the set of relevant observables$Bn% is
confined to the first moments of the single-particle and tw
particle correlation function

P05(
k

\kzae
†~k!ae

†~k!,

dnep
0,0~q!5(

k,p
ae

†~k2q/2!ap
†~p1q/2!

3ap~p2q/2!ae~k1q/2!.

~16!

This set corresponds to a hydrodynamic, local Maxwell
approximation of the distribution functions. For the corre
tion functions in expression~9!, we consider thermodynami
Green’s functions. Using a diagrammatic representat
they can be treated within perturbation theory and a syst
atical inclusion of many-particle effects is possible. In t
present work the correlation functions are evaluated in
Born approximation with a statical screened Coulomb int
actionVS(q)5e2/e0V(q21k2). Herek252nbe2/e0 is the
screening parameter for a two-component plasma in the n
degenerate limit. A more detailed treatment of the collisi
term ~dynamic screening and ladder summations! would re-
sult in corrections ofO(n1/2) in the density expansion~5!.
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This was shown for the single-particle distribution functi
in @11#. We find with the two-particle distributionn2(q)
5N2be2/e0V(q21k2) for the matrix elements

N@P0#5Q@P0#52
eN

b
,

N@dnep
0,0~q!#50,

Q@dnep
0,0~q!#5

ie

eb

M1m

Mm
qzn2~q!,

~17!

D@P0 ;P0#5
4A2p

3

N2

V
Amb

e4

~4pe0!2 LBH ,

D@P0 ;dnep
0,0~q!#52D@dnep

0,0~q!,P0#5
i

b
qzn2~q!,

D@dnep
0,0~q8!;dnep

0,0~q!#5
1

eb

M1m

Mm
@N22Nn2~q!#q2dq8,q .

Here LBH5 1
2 *0

`x(x1k2)22exp(2b\2x/8m)dx is the
Brooks-Herring–type Coulomb logarithm. For a detail
evaluation of the correlation functions see the Appendix.

We can now calculate the determinants in Eq.~9!. Note
that the continuous variableq should be replaced by a finite
setqi of discrete wave numbers to have a finite-dimensio
matrix and the transition to an infinite number ofq can be
performed. The ratio of two finite matrices, which are co
structed with indicesP0 anddnep

0,0(qi), can be evaluated du
to the diagonality indnep

0,0(qi). We are able to rearrange als
the numerator determinant into a diagonal structure with
spect to the indicesqi . This can be done successively b
standard manipulations producing zeros instead
Q@dnep

(0,0)(qi)#. The diagonal part connected with theqi can-
cels and we find for the electrical conductivity

s52
e2N

V

1

D@P0 ;P0# FN

b
1(

q

@ iqzn2~q!#2

@N22Nn2~q!#bq2G
5

e2N2

bV

1

D@P0 ;P0# F12
1

3~21A2!
bk

e2

4pe0
G , ~18!

or using the reduced conductivity of Eq.~3!

s* 5
3

4A2p
LBH

21F12
1

3~21A2!
bk

e2

4pe0
G . ~19!

This result was already found in@11# within linear response
theory. The contribution of the relaxation effect is identic
to the original Debye-Onsager result@7#

CDO5
1

3~21A2!
bk

e2

4pe0
, ~20!

obtained in the theory of electrolytes.
However, the assumption of a local Maxwellian distrib

tion cannot be expected in fully ionized plasmas. This will
demonstrated in the following section. Using the Born a
l

-

-

f

l

-

proximation, the correct low-density expression~5! can be
obtained by including higher moments of the single-parti
and two-particle distribution functions.

V. VARIATION OF THE SINGLE-PARTICLE
DISTRIBUTION FUNCTION

In the first step we extend the set of relevant observab
by including higher moments of the single-particle distrib
tion function Pn @Eq. ~14!# for the electrons and the lowes
moment of the pair-distribution function. Corresponding
the determinants occurring in Eq.~9! contain additional ma-
trix elements compared to the simplest case, discussed in
preceding section, in particular

N@Pn#5Q@Pn#5~Ṙ;Pn!52

GS 51n

2 D
GS 5

2D
eN

b
. ~21!

The additional term̂ Ṙ; Ṗn& occurring inQ@Pn# vanishes in
the Born approximation. This results from symmetry prop
ties of the distribution function; see also~A15!. Furthermore,
we have to calculate the matrix elementsD@Pn8 ;Pn#

5^Ṗn8(e); Ṗn&. For the first momentP0 the result was al-
ready given by

^Ṗ0~e!; Ṗ0&5
4

3
~2p!1/2N2

1

V
m1/2b1/2

e4

~4pe0!2 LBH . ~22!

For higher-order moments Pn , according to Ṗn
5( i /\) @HS ,Pn#, also the electron-electron interaction co
tributes to ^Ṗn8(e); Ṗn& and we obtain with an8n

5^Ṗ2n8(e); Ṗ2n&/^Ṗ0(e); Ṗ0&

a105a0151, a205a0252, a11521A2,
~23!

a215a1256111/A2, a225241157/A8,

which can be found, e.g., in@11#. A correlation function
between the moments of the single-particle distribution a
the pair-distribution function appears as a new term

D@dnep
0,0~q!;Pn#52D@dnep

0,0~q!;Pn#5„dṅep
0,0~q!;Pn…. ~24!

It can be evaluated in the nondegenerate case and we
@see Eq.~A12!#

„dṅep
0,0~q!;Pn…52

i

\ Fb\2

2m G S 31n

n D
3(

k,p
qz^ae

†~k2q/2!ap
†~p1q/2!

3ap~p2q/2!ae~k1q/2!&

52

GS 51m

2 D
bGS 5

2D iqzn2~q!, ~25!
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The correlation function̂dṅep
0,0(q); Ṗn& vanishes in the Born

approximation.
Having the full set of correlation functions at our dispos

the determinants occurring in Eq.~9! have to be evaluated
The procedure explained in connection with Eq.~18! can be
applied again, yielding

s52
b

V

1

uD@Pn ;Pn8#u
U0 N@Pn#

N̄@Pn8# D@Pn ;Pn8#
U, ~26!

with

N̄@Pn8#52

GS 51n8

2 D
GS 5

2D
eN

b F12
1

3~21A2!

bke2

4pe0
G .

~27!

Taking the first three moments$P0 ,P2 ,P4% of the single-
particle distribution function, we obtain for the conductivi

s* 50.583LBH
21F12

1

3~21A2!

be2k

4pe0
G . ~28!

In Table I we compare the Spitzer value with the prefact
of Eq. ~28!, which were found from the successive inclusi
of higher single-particle momentsPn ; see also@17#. The
Spitzer result for the electrical conductivity of an ide
plasma can be derived only if we drop the assumption o
local Maxwellian distribution for the single-particle distribu
tion. The relaxation effect is not affected by the improv
single-particle description. We find that the Debye-Onsa
correction term to the conductivity is obtained if the tw
particle distribution function is considered in hydrodynam
approximation, i.e., onlydnep

0,0(q) is taken into account.

VI. VARIATION OF THE PAIR-DISTRIBUTION
FUNCTION

To derive a rigorous result for the coefficientC(T) in Eq.
~5!, we want to investigate to what extent higher moments
the pair-distribution function influence the Debye-Onsa
correction factor. The inclusion of the second moment of
single-particle distribution~the energy current! yields the
main contribution to the coefficientsA and C in the virial
expansion of the electrical conductivity; see Table I. The
fore, we will also focus on the second moments of the p
distribution function. The set of relevant observables n
consists of the variablesP0 ,P2 , and dnep

m,n(q) with $m,n

TABLE I. The prefactor of Eq.~28! using different orders of
single-particle momentsPn is compared with the Spitzer value.

Order of
single-particle momentsPn Prefactor in Eq.~28!

P0 0.299
P0,P2 0.578
P0 ,P2 ,P4 0.583
Spitzer 0.591
,

s

a

r

f
r
e

-
r-

<2%. In general, according to Eq.~15!, the two-particle den-
sity dnep

m,n(q) contains the functionf e,p(k,p,q) depending
not only on the momentumq but also on the electron mo
mentump and the proton momentumk. In the adiabatic limit
(m!M ) the proton momenta can be neglected. Then
define the moments of the pair distribution function up
second order, writing

dnep
m,0~q!5(

k,p
f e

m,0~k!ae
†~k2q/2!ap

†~p1q/2!

3ap~p2q/2!ae~k1q/2! ~29!

with

f e
m,0~k!5H 1, m50

k,kq, m51

k2,k~kq!,~kq!,2 m52.

If dnep
0,0(q) is included in the set of relevant observables it

not necessary to considerdṅep
0,0(q) too, as shown in@23#.

Thus we can restrict ourselves todnep
0,0(q) and

dnep
1,0~q!5(

k,p
kae

†~k2q/2!ap
†~p1q/2!ap~p2q/2!

3ae~k1q/2!,

dnep
2,0~q!5(

k,p
k2ae

†~k2q/2!ap
†~p1q/2!ap~p2q/2!

3ae~k1q/2! ~30!

for the moments of the pair-distribution function. The corr
lation functions containingdnep

1,0(q) as a relevant observabl
lead to contributions that are of higher order in the dens
expansion~5! than O(n1/2ln n) and thus do not affect the
Debye-Onsager relaxation effect. Therefore, we cons
only dnep

m,0(q) with m5$0,2%. New contributions to the de
terminants in Eq.~9! are the matrix elements

N@dnep
m,0~q!#50,

Q@dnep
m,0~q!#52

e

m
„P;dṅep

m,0~q!…

5

2GS 31m

2
D

ebAp
iqz

e

m
n2~q!,

D@dnep
m,0~q!;Pn#52D@Pn ;dnep

m,0~q!#

5„dṅep
m,0~q!;Pn…

522S 31n

3
D GS 31m1n

2
D

bAp
iqzn2~q!.

~31!
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The last two results can be found in analogy to Eq.~25!. Furthermore, we have to evaluate the collision te

D@dnep
m8,0(q8);dnep

m,0(q)#. The correlation functionŝdṅep
m8,0(q8);dn̈ep

m,0(q)& are ofO(q3/e) and can therefore be omitted in th
quasiclassical limit (q→0). Consequently, the contributions to the collision terms are

D@dnep
m8,0~q8!;dnep

m,0~q!#5
1

e
„dṅep

m8,0~q8!;dṅep
m,0~q!…

5S m1m813

3 D q2dq,q8
emb (

k,p
km1m8^ae

†~k!ap
†~p!ap~p!ae~ l !&

1S m1m813

3 D q2dq,q8
emb (

k,p,h
km1m8^ae

†~k!ap
†~p2q/2!ap

†~h1q/2!ap~h2q/2!ap~p1q/2!ae~k!&

5

GS 51m1m8

2 D
GS 5

2D
q2dq,q8
emb

@N22Nn2~q!#. ~32!
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Again we evaluate the determinants in Eq.~9! and find for
the electrical conductivity

s* 50.578LBH
21 F12

1

3~21A2!
~1.078!

be2k

4pe0
G . ~33!

This expression contains a numerical correction to the
sager resultCDO(T). In fully ionized plasmas we improve
the Onsager correction term to the conductivity by includ
the second moment of the pair-distribution function.

VII. DISCUSSION

In this paper a systematic treatment of the Debye-Onsa
relaxation effect in fully ionized plasmas is performed. W
treat the nonideality corrections to the electrical conductiv
in the low-density limit. A virial expansion of the invers
conductivity is found in the nondegenerate case (Q@1) ac-
cording to

s215a~ ln G23/21b1cG3/2ln G23/2!. ~34!

This virial expansion coincides with expression~5! in the
nondegenerate case where the density dependence is
densed in the plasma parameterG}n1/3/T and the additional
dependence on the temperature is contained in the prefa
a, which yields the dimension of the conductivity. The d
mensionless parametersb andc cannot depend on tempera
ture or density. More explicitly, for hydrogen plasmas w
have

s50.591
~4pe0!2~kBT!3/2

e2m1/2

3F ln G23/211.1241
1.078

A61A3
G3/2ln G23/2G21

51.53031022T3/2@ ln G23/211.124

10.258G3/2ln G23/2#21 ~V m K3/2!21. ~35!
-

er

y

on-
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The main result of the present paper is the evaluation of
coefficient c in Eq. ~34!, which is related to the Debye
Onsager relaxation effect. The results derived in our qu
tum statistical approach are compared with other res
found in the literature in Table II.

Within the kinetic theory a different value from the On
sager result forc is obtained if only the medium modificatio
of the single-particle propagator is considered. We ha
shown that nonequilibrium correlations are responsible
the relaxation effect. Therefore, it is expected that, in co
trast to recent claims@9,10#, the correct Debye-Onsager re
sult can be derived in a kinetic theory only if the two-partic
distribution function is included.

The original Onsager result is reproduced if a Maxwelli
form for the momentum distribution of the two-particle di
tribution function is assumed. The hydrodynamic approxim
tion, where also the single-particle distribution function ha
Maxwellian form, is justified for electrolytes or weakly ion
ized plasmas. We have shown that a modification of the O
sager value is obtained for the fully ionized plasma. T
exact value of the coefficient can be approximated succ
sively by including higher moments. The value, given
Table II, corresponds to the inclusion of the second mome
of the nonequilibrium two-particle momentum distributio

TABLE II. Comparison of the coefficientc in the virial expan-
sion ~34! for the electrical conductivity obtained from differen
methods.

Methods c

kinetic theorya 0.408
hydrodynamic approximationb 0.239
linear response theory
lowest momentsc 0.239
higher momentsd 0.258

aReferences@9,10#.
bReference@18#.
cReference@11#.
dPresent work.
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TABLE III. The resulting values of the electrical conductivity including the relaxation effect~35! are
compared with both experimental data and the Spitzer result.

Plasma
T

(103 K)
ne

(1025 m23) G Q
sexpt

(102 V21 m21)
s

Eq. ~36! sSp

Ara 22.2 2.8 0.368 56.9 190 187 193
20.3 5.5 0.505 33.2 155 197 206
19.3 8.1 0.604 24.4 170 208 218
19.0 14 0.736 16.7 255 242 253
17.8 17 0.838 13.7 245 252 262

Xea 30.1 25 0.564 17.9 450 385 403
Nea 19.8 1.1 0.303 94.6 130 142 146

19.6 1.9 0.367 65.0 165 155 160
aira 11.0 0.13 0.267 218 60 56 57
Arb 16.4 0.06 0.128 551 83 76 76

0.1 0.165 385 79 83 84
0.13 0.18 324 76 86 87
0.15 0.19 291 64 88 89

Xeb 12.4 0.06 0.185 403 46 57 58
0.12 0.234 252 41 63 64

12.6 0.07 0.192 371 48 59 60
0.14 0.239 238 44 65 66

Hc 15.4 0.1 0.175 364 62 77 78
18.7 0.15 0.165 337 91 101 102
21.5 0.25 0.170 276 114 126 128

aReference@2#.
bReference@3#.
cReference@4#.
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The inclusion of the higher moments of the distribution fun
tion leads to a further reduction of the conductivity compa
to the Onsager result.

The relaxation effect describes the nonideality correc
to the conductivity in the low-density case. The applicabi
of the conductivity formula~35! is restricted to the region
G,1. Corrections are small in this region. To demonstr
the influence of the Debye-Onsager relaxation effect on
electrical conductivity we compare in Table III different e
perimental values of the conductivity with the Spitzer res
and with the result of Eq.~35!, where the relaxation effect i
taken into account. On the average, the Spitzer values o
conductivity are larger than the corresponding experime
values. The virial coefficientc in Eq. ~34! yields a reduction
of the Spitzer conductivity. The resulting values for the co
ductivity, shown in Table III, lie within the experimenta
error bars of about 30%.

In order to describe the electrical conductivity in a lar
region of temperature and density further effects have to
included. In particular, effects of degeneracy and the for
tion of bound states contribute in higher orders of the den
expansion. Experimental results for the electrical conduc
ity of nonideal plasmas should be compared with interpo
tion formulas that are valid in an appropriate region of d
sity and temperature. The low-density expansion of Eq.~35!
may serve as an input to construct an expression for
conductivity for nonideal plasmas. The derivation of interp
lation formulas for the electrical conductivity, which a
valid also in the strongly coupled caseG>1 and in the Born
limit G2Q!1, should contain Eq.~35! as a limiting case. We
plan to do this in the future.
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APPENDIX: CORRELATION FUNCTIONS

In this appendix we outline the calculation of the corre
tion function. We use relations that result from a partial
tegration of the equilibrium correlation function~12!

^A;B&5
1

e
~A;B!1

1

e
^A;B&, ~A1!

from Kubo’s identity

~Ȧ;B!5
i

\b
^@B,A#&, ~A2!

and from the definition of the scalar product~11!

~Ȧ;B!52~A;Ḃ!. ~A3!

Starting with the matrix elementN@P0#, we find with Eq.
~A2!

N@P0#5~Ṙ;P0!5
i

\b
^@R,P0#&52

eN

b
. ~A4!
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For the evaluation ofN@dnep
0,0(q)# in the Born approximation

we start with the integration overt. Applying Wick’s theo-
rem we find that this term

N@dnep
0,0~q!#5„Ṙ;dnep

0,0~q!…

52
e

b

m1M

mM E
0

b

dt Tr@r0P0~2 i\t!dnep
0,0~q!#

52e
m1M

mM (
l ,k,p

\ l z^ae
†~ l !ae~ l !ae

†~k2q/2!

3ap
†~p1q/2!ap~p2q/2!ae~k1q/2!& ~A5!

gives no contribution due the symmetry (l z→2 l z) of the
distribution functionf l .

In the matrix element

D@P0 ;dnep
0,0~q!#5„P0 ;dṅep

0,0~q!…1^Ṗ0 ,dṅep
0,0~q!& ~A6!

we have to calculate two correlation functions. Again, t
second term vanishes in the Born approximation for symm
try reasons. For the first we use Eq.~A2! and arrive at

„P0 ;dṅep
0,0~q!…52

i

b\
^@P0 ,dnep

0,0~q!#&

5
i

b (
k,p

qz^ae
†~k2q/2!ap

†~p1q/2!

3ap~p2q/2!ae~k1q/2!&. ~A7!

According to@22#, this correlation function

^ae
†~k2q/2!ap

†~p1q/2!ap~p2q/2!ae~k1q/2!&

5E dv

p

1

ebv21
ImG~k,p,q,v1 i e! ~A8!

is associated with a Green’s functionG(k,p,q,v), which
can be evaluated in the ladder approximation. In the B
approximation for the two-particle Green function only o
interaction line is included

G~12,1828!5G0~118!G0~228!1G0~13!G0~24!

3V~34,3848!G0~3818!G0~4828!. ~A9!

Applying the Matsubara technique of standard quantum
tistics @22#, the Fourier transformation of Eq.~A9!
G(k,p,q,vl) is given in the limit of small densities (f k
!1) by

G~k,p,q,vl!5
V~q!

DEkpq
F 1

vl2Ep1q/22Ek2q/2

2
1

vl2Ep2q/22Ek1q/2
G , ~A10!

with DEkpq5Ep1q/21Ek2q/22Ep2q/22Ek1q/2 . Exploiting
the Dirac identity, we find with Eq.~A8! for the correlation
function
-

n

a-

^al 2q/2
† ah1q/2

† ah2q/2al 1q/2&

5
VS~q!

DEkpq
@nB~Ep1q/21Ek2q/2!2nB~Ep2q/21Ek1q/2!#

52bVS~q!n2
~2pb\2!3

m3/2M3/2 exp@2b~Ep2q/21Ek1q/2!#,

~A11!

with the Bose distribution functionnB(v)5@exp(bv)21#21.
Now we find for Eq.~A7!

„P0 ;dṅep
0,0~q!…5 iqzN

2
e2

e0V~q21k2!
5 i

1

b
qzn2~q!. ~A12!

The result of the first correlation function for the matr
element

Q@P0#5~Ṙ;P0!1^Ṙ; Ṗ0& ~A13!

is already known from Eq.~A4!. This yields in the Born
approximation

^Ṙ; Ṗ0&5
2 ie\b

e

M1m

Mm (
l ,h,k,q

kzqz^ae
†~ l !ae~ l !ae

†~k2q/2!

3ap
†~p1q/2!ap~p2q/2!ae~k1q/2!&,

which gives no contribution because of the same symm
arguments as in Eq.~A5!.

The first term of the matrix elementQ@dnep
0,0(q)#

5„Ṙ;dnep
0,0(q)…1^Ṙ;dṅep

0,0(q)& is known from Eq.~A5!. Ac-
cording to Eq.~A1! we apply in the second term a parti
integration and find two new correlation functions. The fi
expression was calculated in Eq.~A3!, whereas the secon
term vanishes in the Born approximation:

^Ṙ;dṅep
0,0~q!&5

1

e
„Ṙ;dṅep

0,0~q!…1
1

e
^Ṙ;dn̈ep

0,0~q!&

52
e

e

M1m

Mm
„P0 ;dṅep

0,0~q!…

5
ie

eb

M1m

Mm
qzn2~q!. ~A14!

In the collision term of matrix elementD@P0 ;P0#, we have
to considerṖ05( i /\)@HS ,P0#. Because of momentum con
servation in the electron system the electron-electron in
action does not contribute. Applying Wick’s theorem, we g
for the low-density limit (f k!1)
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D@P0 ;P0#5~P0 ; Ṗ0!1^Ṗ0 ; Ṗ0&

52
i

b\
@P0 ;P0#1

1

b E
2`

0

dt ee t

3E
0

b

dt Tr~r0e~ i t /\1t!HSṖ0e2~ i t /\1t!HSṖ0!

5
1

b E
2`

0

dt eetE
0

b

dt (
k,p,q

VS
2~q!

3e~ i t /\1t!DEkpqqz
2f k2qf p1q , ~A15!

with the notationDEkpq5Ek2q1Ep1q2Ek2Ep . Perform-
ing thel andt integration, we find with the help of Dirac’s
identity

D@P0 ;P0#52p\ (
k,p,q

VS
2~q!qz

2f k2qf p1qd~DEkpq!

5
4A2p

3

N2

V
Amb

e4

~4pe0!2 LBH , ~A16!

which results in a final expression with the Brooks-Herrin
type Coulomb logarithm

LBH5
1

2E0

`

dx x~x1k2!22exp~2b\2x/8m!. ~A17!

Using the identity~A2!, the termD@dnep
0,0(q),P0# is equiva-

lent to the matrix element~A6! and yields the result

D@dnep
0,0~q!;P0#5„dnep

0,0~q!; Ṗ0…1^dṅep
0,0~q!; Ṗ0&

52
i

b
qzn2~q!. ~A18!

Finally, we calculate the contribution ofD@dnep
0,0(q8);

dnep
0,0(q)] 5„dnep

0,0(q8);dṅep
0,0(q)…1^dṅep

0,0(q8);dṅep
0,0(q)& to

the determinants in Eq.~9!. The first correlation function
vanishes due to the identity~A2!. The second term is trans
formed via a partial integration into
,

l

D@dnep
0,0~q8!;dnep

0,0~q!#5
1

e
„dṅep

0,0~q8!;dṅep
0,0~q!…

1
1

e
^dṅep

0,0~q8!;dn̈ep
0,0~q!&.

~A19!

Whereas the second term is found to be ofO(q3) and can be
neglected in the quasiclassical limitq→0, the calculation of
the first term yields with the help of Eq.~A2! the result

D@dnep
0,0~q8!;dnep

0,0~q!#

5
1

eb

m1M

mM
qq8dq,q8(

k,p
^ae

†~k!ap
†~p!ap~p!ae~k!&

1
1

eb

m1M

mM
qq8dq,q8 (

k,p,h
^ae

†~k!ap
†~p2q8/2!

3ap
†~h1q8/2!ap~h2q8/2!ap~p1q8/2!ae~k!&.

~A20!

In the leading order of the interaction we truncate the cor
lation functions in Eq.~A20! and use Eq.~A11! with the
result

D@dnep
0,0~q8!;dnep

0,0~q!#

5
1

eb

m1M

mM
qq8dq,q8(

l ,h
^ae

†~k!ap
†~p!ap~p!ae~k!&

1
1

eb

m1M

mM
qq8dq,q8 (

k,p,h
^ae

†~k!ae~k!&

3^ap
†~p2q8/2!ap

†~h1q8/2!

3ap~h2q8/2!ap~p1q8/2!&

5
1

eb

m1M

mM
@N22Nn2~q!#qq8dq8,q . ~A21!
-
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