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Debye-Onsager relaxation effect in fully ionized plasmas
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We consider the virial expansion of the inverse conductivity in fully ionized plasmas=A(T)Inn
+B(T)+C(T)nYan n+0O(n*?) and the coefficientC(T), which is related to the Debye-Onsager relaxation
effect, is evaluated in the nondegenerate case. In analogy to the Chapman-Enskog treatment of the Boltzmann
equation, a moment expansion to evalugid) is presented. Including the two-particle distribution in the
generalized linear response theory, the original Onsager result is recovered within a hydrodynamic approxi-
mation. Improved results for the relaxation effect beyond this approximation are obtained considering higher
moments of the two-particle distribution functidi$1063-651X98)09408-2

PACS numbes): 52.25.Dg, 52.25.Fi, 82.20.Mj, 05.20.Dd

I. INTRODUCTION the system volume. In plasma physics, it is customary to
introduce the dimensionless parameters
One enduring problem in theoretical plasma physics is the
evaluation of electrical conductivity. In the low-density limit, e? Amn\ B3 2mckgT
the conductivity of a fully ionized plasma is given by the I'= AmekaT| 3 | » OF 72—
. . TTE€QKB 3
Spitzer formuld 1]. For dense plasmas, however, experimen-

tal values for different plasmd2—4] show significant devia-

tions from the Spitzer result. This discrepancy requires & (M T) describes the ratio between the mean potential en-
quantum statistical approach for transport coefficients irff9Y @nd the kinetic energy art(n,T) denotes the degree
nonideal, strongly coupled Coulomb systems that takes intgf degeneracy of an ideal electron gas. Using these quanti-
account many-particle effects such as dynamical screenin§©S: We can express the electrical conductivity as
dynamical self-energy, and the formation and medium modi-
fication of bound states; s¢B] for a review.  (kgT)*H4meq)?

A particular problem is the inclusion of nonequilibrium o(nT)= m£2e2 T )
two-particle correlations that lead to modifications of electri-
cal conductivity. In the theory of electrolytes, which can also
be considered as Coulomb systems, the effect of a noneq
librium two-particle distribution on the conductivity was ob-
tained by_De_bye[6] and Onsagg[?,s]. Different methods plasma with statically screened interaction is given by the
such as kinetic theor}9,10] and linear response theodr¥1] famous Spitzer formulal]
have been used to evaluate the Debye-Onsager relaxation
effect in fully ionized plasmas. However, conflicting results 1 (3 -1
for its contribution to electrical conductivity have been ob- * _ Zinl 2r-3
tained. TSp 0.591[2In(21“ ” . (4

In the present paper we calculate the electrical conductiv-
ity using a systematic quantum statistical approach. We corgor nonideal plasmas, the effects of degeneracy and many-
sider a fully ionized hydrogen plasma consisting of the sam@article corrections have to be included. Interpolation formu-
number of electrons and protons to ensure charge neutralityas for the electrical conductivity that are valid in a wide
The electrical conductivitye(n,T) is given by the linear region of temperatures and densities are givefilia—14
relation between the mean electrical currgitand the elec-  and can be both compared with experimental datad] and

(37%n) 28, (2)

with a universal functiono™* (I',®) depending on only the
Wharacteristic plasma parameters. In the low-density limit
(I'<1) the electrical conductivity of a fully ionized ideal

trical field E, Monte Carlo simulation§15]. Such interpolation formulas
reproduce rigorous expressions for the conductivity such as
<j>:<i2 &pi > —oE 1) the low-density limit as well as results obtained from the
Q& m° ' Ziman formula.

Our aim is the evaluation of electrical conductivity in the
The indexc identifies the specieffor the electronm,=m low-density limit, where rigorous results can be derived. To
ande,= —e and for the protorm,=M ande,=e) and{2is  find a microscopic expression for the electrical conductivity
we use the generalized Zubarev method of linear response
theory, which can be found in detalil, e.g., [t6]. This
*Permanent address: Instittr fehysik der Humboldt-Universita method can immediately be generalized to include nonideal-

zu Berlin, AG Halbleitertheorie, D-10117 Berlin, Germany. ity effects such as degeneracy, the formation of bound states,
"Permanent address: AG Quantentheorie und Vielteilchensystemand the ion structure factor, as shown[it7]. Using this
Universita Rostock, D-18051 Rostock, Germany. approach, transport coefficients are expressed through equi-
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librium correlation functions and a systematical treatment ofA quantum statistical approach for the electrical conductivity
these many-particle effects is possible. Results obtained fronx (1) requires the knowledge of the statistical operai(h)
kinetic theory in a perturbative treatment are reproduced ino evaluate the averadg)=Tr{p(t)j}. The nonequilibrium
this method without partial summations, as it would be necstatistical operatop(t) is obtained within the Zubarev ap-
essary in the Kubo approach. proach[20] from the solution of a modified Liouville—von

A virial expansion for the electrical conductivity in the Neumann equation
low-density, nondegenerate limit was given[i], sp(t)

p

o }(n,T)=A(M)In n+B(T)+C(T)n¥n n+---, (5 ot in[Henp(O]=—elp(—pr(D)], (8

where C(T) is related to the Debye-Onsager relaxation ef-where the boundary condition, the weakening of initial cor-
fect, which is known from the theory of electrolyte&8]. It relations, is included in the form of a source term. The limit
describes the partial compensation of the electric field acting_—, 0+ has to be taken after the thermodynamic limit. The
on a charged particle by the formation of an asymmetriGejevant statistical operatop,e=Z, exp(—=,AnBy) fol-
screening cloud. Klimontovich and Ebelid8] found the  |o\s from the principle of maximizing the information en-
original Onsager result for the relaxation effectwreakly  ropy subject to constraints of given mean values of a set of
ionized plasmas, where the assumption of a local Maxwellyg|evant observableB,}. Starting from the solution of Eq.
ian distribution is well founded. The treatment of thdly (g it is possible to derive a generalized Boltzmann equation,
ionized plasma has been considered 4], where also a \hich can directly be compared with expressions from stan-
local Maxwellian distribution is assumed. Again the Onsagerysrd kinetic theory if the sefB,} is given by the single-
result for C(T) is found. Results for the coefficiel@(T), particle occupation numbefg0].

which are in disagreement with the Onsager result, are ob- sjng a finite set of relevant observabl,} to charac-
tained in kinetic theory9,10] when a pure one-particle pic- (erize the nonequilibrium state, the electrical conductivity is

ture is used. We show in our approach that nonequilibrium,yng from linear response theof§,17,24
two-particle correlations have to be included to reproduce

the Onsager result. Furthermore we find t64f) is modi- B 1 0 N[B,] ©

fied in fully ionized plasmas if the assumption of a local =0 be. Bilos DIB., ‘B.1" 9
Maxwellian distribution is dropped. In Sec. Il we express the [DIBn:Bnll|QLBA]  D[By ;By]

electrical conductivity in terms of equilibrium correlation This expression relates the electrical conductivity to equilib-
functions. In analogy to the Chapman-Enskog approach ifjum correlation functions, which can be considered as a spe-

kinetic theory, a moment expansion of the single-particle an@ijal form of the fluctuation-dissipation theorem. The ele-
two-particle distribution function is presented in Sec. Ill. ments of the determinants are

Starting from the lowest moment approximation for the

single-particle as well as for the two-particle distribution N[Bn]Z(R2Bn),

function in Sec. IV, we consider in Sec. V the influence of

higher moments of the single-particle distribution function. Q[B,]=(R;B,) +(R;By), (10)
The inclusion of higher moments of the two-particle distri-

bution function is presented in Sec. VI. The results are fi- D[By :By]=(By :By)+(By :By),

nally discussed in Sec. VII.
with R=—e[(m+M)/mM]P. In Eq. (10) we use Kubo's
[l. CONDUCTIVITY WITHIN GENERALIZED LINEAR scalar producf19]
RESPONSE THEORY

18
The system Hamiltonian of the fully ionized hydrogen (A;B)z—f dr T poA(—ih7)B], 11
plasma Blo

the equilibrium correlation function
Hs=2, Ec(k)ag(kjac(k) .
' . <A;B>=f dt e?(A(t);B), (12)
+5 2 Ved@al(k-aai(p+a)aap)ack)
c.dkp.a and the equilibrium  statistical  operator pq
(6) =Z, lextd — B(Hs—=.ucNo)]. In the Heisenberg picture
the time evolution isA(t) =exp(Hd/A)Aexp(—iH{/%) and
contains the kinetic energi.(k) =7%2k?/2m, and the Cou- A= (i/h)[Hs,A]
. . _ 2 . 1 .
Iomb_lnteracthnvcd(q).—eced/eoﬂq - The mdexk denotes The evaluation of the equilibrium correlation function can
the single-particle variable momentum arld spin. The systergg performed using the formalism of thermodynamic
is subjected to a static electric fieli=Ee, and the total Green’s functiong5]. This allows for a perturbative expan-

Hamiltonian reads sion with respect to the interaction. Only the lowest orders
are considered in the present work. A very important ques-
H —He—E er —H«—ER. 7 tion is the choice of the set of relevant ob_servat{lBﬁ},
ees ; cez TS @) which will be discussed in the following section. In connec-
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tion with expression(9) we note that this expression corre- ments will increase the conductivity. It has been sh¢i
sponds to the Chapman-Enskog or Grad approach of kinetithat the inclusion of a finite number of low-order moments
theory if an appropriate set of relevant observables is usedgsults in a converging expression for the tekrim the virial

see[5,11]. expansion(5).
A similar approach can be applied for the treatment of the
IIl. CHOICE OF RELEVANT OBSERVABLES two-particle distribution function. Obviously the dependence

on three momentak(p,q) requires a larger variety of mo-
For small densities it is sufficient to take fluctuations of ments. Conserving the dependence on the relative distance
the single-particle occupation numbénc(k)=al(k)ac(k) in the form of the Fourier transform, moments with respect
—(aZ(k)ac(k))o as relevant observabl&, [11]. The mean to the momentk andp of species andd, respectively, are
value (6n,)=f,—f? describes the deviation of the single- introduced
particle distribution functionf, from its equilibrium value
fe. The response equations derived from E).are equiva- 5n”f’dm'(q)=2 fgfam'(k,p,q)al(k—qIZ)
lent to the Boltzmann equation for the single-particle distri- k.p
bution function[20], where the collision integral is expressed
in terms of correlation functions. The evaluation of the cor-
responding correlation functiofl0) in the ladder approxi- ) e’ ] ] ) )
mation and considering screening effects has been performdd® functionsfc 4™ (k,p,q), which will be discussed in de-
in [11], where results for the coefficiensg(T) andB(T) in tail in Secs. IV and V, are ofth order |pk and ofm’th
Eq. (5) were obtained. Furthermore, it was shown that noorder inp. In this way, the momentén'y" (q) refer to the
contributions to the coefficier@(T) occur within the single- momentum distributions of both particles of specemndd.
particle description. We will proceed as follows. In the first step, we consider
In order to evaluate the electrical conductivity to orderonly the momentsn'g(q) in combination with the moment
n'4nn with respect to the density we have to include thep, [Eq. (14)] of the single-particle distribution to demon-
two-particle distribution function. In the homogeneous casestrate the formalism. We will extend the number of relevant
this means that we have to enlarge the set of relevant obsergbservables by including further momerits. In the second
ablesB,, by inclusion of the two-particle observables step we will confine ourselves ®y,P, and will improve the
two-particle distribution by including the second moments.

xal(p+q/2)ag(p—al2ack+a/2). (15

oncq(pka) =al(k—a/2)al(p+a/2)aq(p—a/2)ak+q/2)

13 IV. ONSAGER'S RESULT
for q#0. Hence the response equations that lead to(%. In the first step, we rederive Onsager’s result using lowest
h_ave the form of a couplec_j system of_ equations for thenoments only. As argued by Onsad&, the two-particle
single- and two-particle distribution functions. correlation function of the electron-electron and proton-

The full solution of the response equations for the singleproton density| 5n2£(q) and 5“3’5((1)] does not affect the
and two-particle distribution functions is equivalent to therelaxation effect in the linear regime because of symmetry
solution of a coupled system of integral equations if we conproperties. Therefore, the set of relevant observaiies is

sider the indice& andkpag, respectively, as continuous vari- confined to the first moments of the single-particle and two-
ables. We will find an approximate solution of the responsearticle correlation function

equations by taking into account only a finite number of

moments of the distribution functions. In the adiabatic limit N T
we consider only the electron distribution. In particular, in- P0=Ek fikzae(k)ag(k),
stead of solving the response equations for the single-particle

distribution we consider a finite number of moments

0,00 vy — Tl t
2210 sngs(a) kE,pae<k a/2)a(p+a/2) (16)
Po=> fik) B=——| al(k)as(k). 14
b P am,) 202l (49 X ap(p—a/2)ag(k+a/2).

This means that instead of the single-particle occupatiohis set corresponds to a hydrodynamic, local Maxwellian
number only a finite number of momerf, are included in  approximation of the distribution functions. For the correla-
the set of relevant observablBg. In the simplest case only tion functions in expressio(®), we consider thermodynamic
the total momentum of the electron syst@&is considered Green’s functions. Using a diagrammatic representation,
as a relevant observable. This leads to the well known forcethey can be treated within perturbation theory and a system-
force correlation approach to the conductivity. atical inclusion of many-particle effects is possible. In the
For a sufficient high number of moments, the single-present work the correlation functions are evaluated in the
particle distribution function is approximated well and the Born approximation with a statical screened Coulomb inter-
conductivity is obtained by the algebraic solution of the sys-actionVs(q) =e?/ e,Q2(q?+ «?). Here k?=2nBe? ¢, is the
tem of response equations. This procedure corresponds to teereening parameter for a two-component plasma in the non-
Grad or the Chapman-Enskog approach for solving the lindegenerate limit. A more detailed treatment of the collision
earized Boltzmann equation. As it is well known from the term (dynamic screening and ladder summatjowsuld re-
Kohler variational principlé21], the inclusion of higher mo- sult in corrections of0(n'?) in the density expansiofb).
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This was shown for the single-particle distribution function proximation, the correct low-density expressi(®) can be
in [11]. We find with the two-particle distributiom,(q) obtained by including higher moments of the single-particle

=N?Be?/ e,Q(q?+ k?) for the matrix elements and two-particle distribution functions.
N[P,]=Q[P,]= — eN V. VARIATION OF THE SINGLE-PARTICLE
0 0 B’ DISTRIBUTION FUNCTION
N[ 8n%%(q)]=0 In the first step we extend the set of relevant observables
ep )

by including higher moments of the single-particle distribu-
tion function P, [Eq. (14)] for the electrons and the lowest

ie M+m
Qlanga)]= aqunz(q% moment of the pair-distribution function. Correspondingly,
(17)  the determinants occurring in E€®) contain additional ma-
4\/— trix elements compared to the simplest case, discussed in the
- /_ preceding section, in particular
D[P01 O] (4 6)2 BH!
5+n
i o
D[Po;dn2s(a)]= —D[ng(q),Po]= 022(0), NLPal=QIPo]=(RiPo) == — - (2D
3

M+m
Dongp(a"); ongpla)]= — 77— [N~ Nny(a)10%31 4. N . o -
'8 The additional term{R;P,,) occurring inQ[P,] vanishes in
the Born approximation. This results from symmetry proper-

1> 2\—2 a 2 H
Here  Lgy=3/oX(x+ %) “exp(-phx/8m)dx is the ties of the distribution function; see aléa15). Furthermore,

Brooks—.Hernng—type Coiulomb Ic_xgarlthm. For a detfeuledWe have to calculate the matrix elemenB{P,,:P,]
evaluation of the correlation functions see the Appendix. . r )

We can now calculate the determinants in E). Note =(Pn(€);Pp). For the first momenPy, the result was al-
that the continuous variabtgshould be replaced by a finite- €2dy given by

setq; of discrete wave numbers to have a finite-dimensional 1 o
matrix and the transition to an infinite number g@ftan be (Po(€); p0>_ (2m)VaN2 = 1/2,5>1/2_2|_BH (22)
performed. The ratio of two finite matrices, which are con- Q (47ep)

structed with indice?o and 5n (q,) can be evaluated due ] . .
to the diagonality inon2:(a;). We are able to rearrange also FOr _higher-order moments P,, according to P,
the numerator determinant into a diagonal structure with re= (/) [Hs,Py], also the electron-electron interaction con-
spect to the indices;; . This can be done successively by tributes to (P, /(€);P,) and we obtain with a,,
standard manipulations producing zeros instead 0f= (P, (€);Pn)/{(Po(€);Po)

Q[an{%(q;) 1. The diagonal part connected with thecan-

cels and we find for the electrical conductivity ajp=ap1=1, axp=ag=2, a;;=2+ V2, 23)
U:_eZ_N 1 [N 5 [i9°nx(q)]? } Ay =a;,= 6+ 1142, ay=24+157A8,
Q D[Pg;Pol| B F [N*—Nny(®)]Bg”

which can be found, e.g., ifll]. A correlation function
between the moments of the single-particle distribution and
(18)  the pair-distribution function appears as a new term

e?N? 1 2

= BQ D[PyiPol| 1T

32+ 2) " dmey|

0,0/ - _ 0,0/ Y - — (500 -
or using the reduced conductivity of E) DLoNep(Q);Pnl= =DLNep(q); Pn] = (aNep(Q);Pr). - (24)

It can be evaluated in the nondegenerate case and we find

3 1 e?
ot =—— 121 1— P 19 [see Eq(A12)]
427 7T 3(2+42) Pe e (
0.0 . Bh?|[3+n
This result was already found [i.1] within linear response (8Nep(Q); Pn)=— % 2m n

theory. The contribution of the relaxation effect is identical

to the original Debye-Onsager res(ift
g Y ger res{imy X kEp q(al(k—al2)al(p+aq/2)

2

1 e
Coo= 20 Xap(p— +
DO 3(2+@BK4M (20 ay(p—a/2)ask+a/2))
5+m
obtained in the theory of electrolytes. 5

However, the assumption of a local Maxwellian distribu- =— ig,n,(q)
tion cannot be expected in fully ionized plasmas. This will be BF(—>
demonstrated in the following section. Using the Born ap-

(25
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_ TABLE . The prefactqr of Eq(28) US_ing diﬁergnt orders of <2} In general, according to E@l5), the two-particle den-
single-particle momentB,, is compared with the Spitzer value. sity 5nembn(Q) contains the functiorf, ,(k,p,q) depending
not only on the momenturg but also on the electron mo-

. Order of , mentump and the proton momentukn In the adiabatic limit
single-particle moment®, Prefactor in Eq(28) (m<M) the proton momenta can be neglected. Then we
Po 0.299 define the moments of the pair distribution function up to
PoP> 0578 second order, writing
Po.P2,P4 0.583
Spitzer 0501 ongya) =2 fIMk)al(k—al2)aj(p+a/2)
k,p
The correlation functio ng(q); P} vanishes in the Born Xap(p—al2)as(k+0a/2) (29)
approximation. with
Having the full set of correlation functions at our disposal,
the determinants occurring in E) have to be evaluated. 1, m=0
The procedure explained in connection with Etg) can be mo L _
applied again, yielding f(k) =1 k.ka, m=1
k?,k(kqg),(kq),? m=2.
B 1 |9 NLPn] 26 00 i . o
OC=— T =7 | — , '
Q [D[P, ;P ]| N[P.] DI[Py:Pu] If ongpp(q) is included |rT thg()s:c)et of relevant observf':\bles it is
not necessary to considéing,(q) too, as shown ir{23].
with Thus we can restrict ourselves mg'p(q) and
5+n’
1,0/ 4\ — T i _
NP ( > ) enf, 1 Bre? Snep(a) kEp kae(k—a/2)ap(p+a/2)ay(p—al2)
n! = — - - = 5.
r(g) AL 32+y2)4meo X ag(k+q/2),

(27)

on2%q)=>, k%al(k—gq/2)al(p+aq/2)a,(p—q/2

Taking the first three momentP,,P,,P,} of the single- (@) kEp (k= a2)2(p T ai2)ay(pa/2)

particle distribution function, we obtain for the conductivity X ag(k+q/2) (30)

1 Be’k o .

_ (2g)  for the moments of the pair-distribution function. The corre-

lation functions containingﬁnég’(q) as a relevant observable
lead to contributions that are of higher order in the density

In Table | we compare the Spitzer value with the prefaCtOYSexpansion(S) than O(nl/zln n) and thus do not affect the

of Eq. (28), which were found from the successive inclusion Debye-Onsager relaxation effect. Therefore, we consider

of higher single-particle moment8,; see also[17]. The  only snZi(q) with m={0,2. New contributions to the de-

Spitzer result for the electrical conductivity of an ideal terminants in Eq(9) are the matrix elements

plasma can be derived only if we drop the assumption of a

local Maxwellian distribution for the single-particle distribu- N[5ng‘b°(q)]:0,

tion. The relaxation effect is not affected by the improved

single-particle description. We find that the Debye-Onsager e )

correction term to the conductivity is obtained if the two- Q[&ng‘bo(q)]= - —(P;5n2},°(q))

particle distribution function is considered in hydrodynamic m

1_

o*=0.583 5}

3(2++2) 47eo

approximation, i.e., onlyind:(q) is taken into account. 3+m
2I'f ——
VI. VARIATION OF THE PAIR-DISTRIBUTION _ 2 iqZEnz(q),
FUNCTION BT m

To derive a rigorous result for the coefficiegd{T) in Eq. mo, .
(5), we want to investigate to what extent higher moments of DP[Mep ();Pn]
the pair-distribution function influence the Debye-Onsager © M0 .
correction factor. The inclusion of the second moment of the :(5neb (9);Pn)

=—D[Py;nT%(q)]

single-particle distribution(the energy curreityields the 3+m+n

main contribution to the coefficienta and C in the virial -
expansion of the electrical conductivity; see Table I. There- 3+n 2 )

fore, we will also focus on the second moments of the pair- =-2 3 P 19n2(q).

distribution function. The set of relevant observables now
consists of the variableB,,P,, and éngy'(q) with {m,n (31



PRE 58 DEBYE-ONSAGER RELAXATION EFFECT IN FULL ... 2451
The last two results can be found in analogy to E85). Furthermore, we have to evaluate the collision term

D[&nemp;'o(q’); angy(a)]. The correlation functioné&hem,;'o(q’);5Hem,3°(q)) are ofO(q®/ €) and can therefore be omitted in the
guasiclassical limitd—0). Consequently, the contributions to the collision terms are

' 1 .., .
DL ang, (a"): angy(a)]= = (8ng, Aa’): g (a))

’ 25 , ’
m-+m +3) 9" 9,q > mem (al(k)al(p)ay(p)ae(l))

3 emB ip
m+m’+3) g3, ¢ ey ;
3 amp 2 K (@0 (P ar2)ay(h+ a/2)ah—a12)ay(pt a/2)ax(K)
5+m+md
2 Paq' s
- (5) empB [N _an(q)]- (32)
M2

Again we evaluate the determinants in Ef) and find for  The main result of the present paper is the evaluation of the
the electrical conductivity coefficientc in Eqg. (34), which is related to the Debye-
Onsager relaxation effect. The results derived in our quan-
tum statistical approach are compared with other results
(33) found in the literature in Table II.
Within the kinetic theory a different value from the On-
sager result foc is obtained if only the medium modification

62K

o*=0.578 5} 1.078 P
BH 4

TEQ

1
1- (
3(2+42)

This expression contains a numerical correction to the OnOf the sinale-particle propagator is considered. We have
sager resulCpo(T). In fully ionized plasmas we improve Ingle-parti propag : ! ' v

the Onsager correction term to the conductivity by includingShOWn tha§ nonequilibrium corre!at'lons are respons!ble for
the second moment of the pair-distribution function. the relaxation effect. Therefore, it is expected that, in con-

trast to recent claimg9,10], the correct Debye-Onsager re-
sult can be derived in a kinetic theory only if the two-patrticle
distribution function is included.

In this paper a systematic treatment of the Debye-Onsager The original Onsager result is reproduced if a Maxwellian
relaxation effect in fully ionized plasmas is performed. weform for the momentum distribution of the two-particle dis-
treat the nonideality corrections to the electrical conductivitytribution function is assumed. The hydrodynamic approxima-
in the low-density limit. A virial expansion of the inverse tion, where also the single-particle distribution function has a
conductivity is found in the nondegenerate ca@e(1) ac- Maxwellian form, is justified for electrolytes or weakly ion-
cording to ized plasmas. We have shown that a modification of the On-

sager value is obtained for the fully ionized plasma. The
o t=a(ln T3+ b+cl¥n I 37, (34)  exact value of the coefficient can be approximated succes-
sively by including higher moments. The value, given in
This virial expansion coincides with expressif®) in the  Table Il, corresponds to the inclusion of the second moments
nondegenerate case where the density dependence is cai-the nonequilibrium two-particle momentum distribution.
densed in the plasma paramefern¥/T and the additional
dependence on the temperature is contained in the prefactor TABLE Il. Comparison of the coefficient in the virial expan-
a, which vyields the dimension of the conductivity. The di- sion (34) for the electrical conductivity obtained from different
mensionless parametebsand ¢ cannot depend on tempera- methods.
ture or density. More explicitly, for hydrogen plasmas we

VIl. DISCUSSION

have Methods c
kinetic theory 0.408
2 32
020_59](41760) (kgT) hydrodynamic approximatién 0.239
e’m*? linear response theory
8 . lowest momenfs 0.239
slin 3241 1241 32 312 higher moments 0.258
\/6-1— \/5 aReference$9,10].
= 1.530< 1023 In I ~%2+1.124 "Referencd 18],
‘Referencd 11].

+0.258%An T 3271 (O m K¥?)~1, (35 9Yresent work.
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TABLE lIl. The resulting values of the electrical conductivity including the relaxation ef@b; are
compared with both experimental data and the Spitzer result.

T Ne T expt o
Plasma (10° K) (10 m™3) r 0 (107 Q’f m) Eq. (36) Osp
Ard 22.2 2.8 0.368 56.9 190 187 193
20.3 5.5 0.505 33.2 155 197 206
19.3 8.1 0.604 24.4 170 208 218
19.0 14 0.736 16.7 255 242 253
17.8 17 0.838 13.7 245 252 262
Xe? 30.1 25 0.564 17.9 450 385 403
Ne? 19.8 1.1 0.303 94.6 130 142 146
19.6 1.9 0.367 65.0 165 155 160
airt 11.0 0.13 0.267 218 60 56 57
ArP 16.4 0.06 0.128 551 83 76 76
0.1 0.165 385 79 83 84
0.13 0.18 324 76 86 87
0.15 0.19 291 64 88 89
XeP 12.4 0.06 0.185 403 46 57 58
0.12 0.234 252 41 63 64
12.6 0.07 0.192 371 48 59 60
0.14 0.239 238 44 65 66
HE 154 0.1 0.175 364 62 77 78
18.7 0.15 0.165 337 91 101 102
21.5 0.25 0.170 276 114 126 128
8Referencd?].
bReferencd3].
‘Referencd4].
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the influence of the Debye-Onsager relaxation effect on the APPENDIX: CORRELATION FUNCTIONS

electrical conductivity we compare in Table Il different ex-
gﬁgrcv?t?]t?rl]g?gseusltcgftgagg)n?thcet'rve't?h\év':gl;T(zti?]'tszreéﬁsuntion function. We use relations that result from a partial in-
taken into account. On the average, the Spitzer values of thtggratlon of the equilibrium correlation functida?)
conductivity are larger than the corresponding experimental

In this appendix we outline the calculation of the correla-

values. The virial coefficient in Eq. (34) yields a reduction (A;B)= E(A; B)+ 1(A;B>, (A1)
of the Spitzer conductivity. The resulting values for the con- € €

ductivity, shown in Table I, lie within the experimental

error bars of about 30%. from Kubo’s identity

In order to describe the electrical conductivity in a large
region of temperature and density further effects have to be

. [
included. In particular, effects of degeneracy and the forma- (A;B)= %([B,A]), (A2)
tion of bound states contribute in higher orders of the density
expansion. Experimental results for the electrical conductivynd from the definition of the scalar produt)
ity of nonideal plasmas should be compared with interpola-
tion formulas that are valid in an appropriate region of den- (A:B)=—(A:B) (A3)

sity and temperature. The low-density expansion of B8§)
may serve as an input to construct an expression for th
conductivity for nonideal plasmas. The derivation of interpo-
lation formulas for the electrical conductivity, which are
valid aéso in the strongly coupled cabFe=1 and in the Born i oN
limit '“®@ <1, should contain Eq35) as a limiting case. We DD Y— __ ="

plan to do this in the future. N[Po]=(R;Po)= hﬁ<[R’ Pol)= B (A4)

gtarting with the matrix elemerMl[Py], we find with Eq.
(A2)



PRE 58 DEBYE-ONSAGER RELAXATION EFFECT IN FULLY ... 2453

For the evaluation olfxl[éng';’(q)] in the Born approximation <al’f_q,2aﬁ+q/2ah_q,2a|+q,2>
we start with the integration over. Applying Wick’s theo-

rem we find that this term Vs(q)
= m[nB(Ep+q/2+ Equlz) - r1B(Ep7q/2+ Ek+q/2)]
NLangsla)]= (R; ongsla)) (2m B2
em+M (8 _ 00 =—BVS(q)n2—m—372—m M exd — B(Ep— gt Exig) 1,
-2 [ ar TipoPy—inm il
B mM Jo (A11)
m+M
=—e > kl(al(hag(l)al(k—q/2)
mM 1kp A2c(Dasla; a with the Bose distribution functiong(w) =[expBw)—1] .

Now we find for Eq.(A7
Xa;(p+q/2)ap(p—q/2)ae(k+ a/2))  (A5) a-(A7)

gives no contribution due the symmetrl, —1,) of the e? 1
distribution functionf, . Po:on®%q)=ig,N2————=i—=q,n,(q). (Al2
In the matrix e|en':ent (Po ep(q» q; €OQ(q2+ KZ) qu 2(Q) ( )

. 0,0, _ . o4 0,0 - ~ 0,0
D[Po;dnep(a)]=(Po; anep(a))+(Po, aNep(a)) (A6) The result of the first correlation function for the matrix

we have to calculate two correlation functions. Again, theelement

second term vanishes in the Born approximation for symme-

try reasons. For the first we use H#2) and arrive at Q[Po]=(R;Po) +(R;Po) (A13)
_ i is already known from Eq(A4). This yields in the Born
(Po; aNgyl(a) = — 7 ([Po.onggla)]) approximation
i
== 2 Aal(k—a/2af(p+a/2) .. —iehgM+m
By B¢ P (R;Pg)= N |%q kzqz(al(l)ae(l)al(k—q/Z)

Xap(p—a/2)a.k+q/2)). (A7)

t _
According to[22], this correlation function Xap(pt+ai2)ay(p—al2)agk+aq/i2)),

t t
(ae(k—q/2)ap(p+q/2)ap(p—q/2)ae(k+q/2)> which gives no contribution because of the same symmetry
do 1 . arguments as in EqA5).
=) e IMG(k,p,q,w+ie€) (A8) The first term of the matrix elemenQ[ on2X(q)]
= (R; ng(a))+(R; ngi(a)) is known from Eq.(A5). Ac-
is associated with a Green’s functi@®(k,p,q,®), which cording to Eq.(Al) we apply in the second term a partial

can be evaluated in the ladder approximation. In the Borrntegration and find two new correlation functions. The first

approximation for the two-particle Green function only one €xpression was calculated in E@A3), whereas the second

G(12,12")=Gy(11')Gy(22') + Go(13)Gp(24)

L 1. . 1. .
XV(34,34')Go(3'1')Go(4'2").  (A9) (R ongpl@)) = — (R dngyla)) + — (R ongyl(a))
Applying the Matsubara technique of standard quantum sta-
tistics [22], the Fourier transformation of Eq(A9) _eM+m .o
G(k,p,g,@,) is given in the limit of small densitiesf{ =2 mm (Poioney(a))
<1) by
ie M+m
V(a) 1 _lerm Al4
G(k,p,q,wy) = azn2(q). (A14)
(k... 0)) AEkpq wx—Ep+q/2_Ek—q/2 €6 Mm

1

)~ Ep—q/2_ Ek-%—q/2

: (A10)  |n the collision term of matrix elemem®@[Py;P,], we have

to considerP,=(i/%)[Hs,P,]. Because of momentum con-
with AEypq=Ep+ g2t Ex—q2— Ep—gq2— Ek+q2- EXploiting  servation in the electron system the electron-electron inter-
the Dirac identity, we find with Eq(A8) for the correlation action does not contribute. Applying Wick’s theorem, we get
function for the low-density limit ,<1)
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PLPo:Pal=(Po:Pa)+{PoiPo) DLon%8(a"); an2a)]= < (528" ): an2a)
i 1 (o
=——[Po;Pol+ 5 | dte! 1 . )

ph - + Z(n2%a"); n3S ).

B ) . . .
< fo dr Tr(poe('“h* T)Hspoe—(n/m T)HSPO) (A19)

1 (o <[P ) Whereas the second term is found to b&gt®) and can be
- B _mdt e 0 di%q Vs(a) neglected in the quasiclassical lingjit~0, the calculation of
_ i the first term yields with the help of E¢A2) the result
SR+ 1 P J (A15)

0,0/ ~7Y- 0,0
with the notationAE,q=Ey_q+Epq—Ex—Ep. Perform- DLonep(a’); onep(a)]

ing theX and r integration, we find with the help of Dirac’s 1 m+M ; :
identity =25 mm 99 %aq 2 (@ay(P)ay(p)ack)
D[Po;Pol=—fi > VAA)Qfx—qofprqd(AEipg) 1 mtM foat(p—g’
0:Fo Wl S z'k—q'p+q kpg +¥qu 6q'q,k’2p’h (ae(k)ap(p—q 12)

, . A20
:—Ngz_WNﬁ m,6"(4e 2L, (A16) xal(h+a'/2)ay(h-a'2)ay(p+a'2)ad(k)). 20
TEQ

which results in a final expression with the Brooks-Herring—
type Coulomb logarithm In the leading order of the interaction we truncate the corre-
lation functions in Eq.(A20) and use Eq(A11) with the

1 )
Len=5 fo dx x(x+ x2) ~2exp — Bh2x/8m). (Al7)  result

0,0/ N7 - 0,0
Using the identity(A2), the termD[ 8ngi(q),Po] is equiva- D[onep(a’); dnep(a)]
lent to the matrix elementA6) and yields the result 1 m+M s 2( T(k) T( a(pagk)
) : ) =2 44 9q,q’ a.(K)ap(p)ap(p)a
D[ ongp(a); Pol = (8ngg(a); Po) +(8ngy(a): Po) €6 mM T REIR e
i 1 m+M

| . ’ t
— = 50l (A18) +f M 99 %ar 2y (ac(kad)
T ' t ’

Finally, we calculate the contribution oD[sngs(a’); X(ap(p—q'/2)a(h+q'/2)
SN2 )] = (an2(a’); ang(a)) +(Snge(a’); ng(a))  to xay(h—q'2)ay(p+q'/2))
the determinants in Eq9). The first correlation function L meM
vanishes due to the identity2). The second term is trans- _+-m 2_ ,
formed via a partial integration into €8 mM [N"=Nn2(a)]aq’" g q- (A21)
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